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The Finite Element Method (FEM) in Fluid Mechanics
Galerkin Finite Element Method (FEM) has a
number of attractions in fluid mechanics:

Flexibility in handling complex geometries.
Ability to handle different forms of
boundary conditions.

FEM is quasi-optimal for elliptic
(diffusion-dominated) PDEs: assures good
performance of the computation at any mesh
resolution.

However:
coarse mesh accuracy is not guaranteed
when the flow is advection-dominated!

Significant mesh refinement typically
needed to capture boundary layer region

EXPENSIVE!

Approach: develop a novel, efficient FEM that can accurately capture boundary
layers for a canonical fluid problem; then generalize.
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Scalar Advection-Diffusion Equation

Lc = −κ∆c︸ ︷︷ ︸
diffusion

+ a · ∇c︸ ︷︷ ︸
advection

= f

2D advection velocity vector:
a = (a1, a2)T = |a|(cosφ, sinφ)T .

φ = advection direction.

κ = diffusivity.

Describes many transport phenomena in fluid mechanics:
Heat transfer.
Semi-conductor device modeling.
Usual scalar model for the more challenging Navier-Stokes
equations.

Global Péclet number (L = length scale associated with Ω):

Pe =
rate of advection
rate of diffusion

=
L|a|
κ

= Re ·
{

Pr (thermal diffusion)
Sc (mass diffusion)
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Advection-Dominated Regime

Typical applications: flow is
advection-dominated.

Figure 1: Galerkin Q1 solution
(color) vs. exact solution (black)
(Pe = 150)

Some classical remedies:

Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.
RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
local behavior of solution.
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History of the Discontinuous Enrichment Method
(DEM) and Its Success

Acoustic scattering problems (Helmholtz equation) [4,5].

First developed by Farhat et. al in 2000 for the
Helmholtz equation.
A family of 3D hexahedral DEM elements for medium
frequency problems achieved the same solution
accuracy as Galerkin elements of comparable
convergence order using 4–8 times fewer dofs, and up
to 60 times less CPU time [4].
Domain decomposition-based iterative solver for 2D
and 3D acoustic scattering problems in medium- and
high- frequency regimes has been developed [5].

Wave propagation in elastic media (Navier’s equation) [6].

Fluid-structure interaction problems (Navier’s equation
and the Helmholtz equation) [7, 8].

Excellent performance motivates
development of DEM for other applications

→ Fluid Mechanics
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Enrichment Field in DEM

Idea of DEM:

“Enrich” the usual Galerkin polynomial field VP by the free-space solutions to
the governing homogeneous PDE Lc = 0.

ch = cP + cE ∈ VP ⊕ (VE\VP)

where
VE = span{c : Lc = 0}

Simple 1D Example:{
ux − uxx = 1 + x , x ∈ (0, 1)
u(0) = 0, u(1) = 1

Enrichments: uE
x − uE

xx = 0⇒ uE = C1 + C2ex ⇒
VE = span{1, ex}.
Galerkin FEM polynomials: VP

Ωe=(xj ,xj+1) = span
{

xj+1−x
h ,

x−xj
h

}
.
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What about Inter-Element Continuity?

DEM = DGM with Lagrange Multipliers

DEM is discontinuous by construction (enrichment field in DEM is not
required to vanish at element boundaries).

Continuity across element boundaries is enforced weakly using
Lagrange multipliers λh ∈ Wh:

λh ≈ ∇cE
e · ne = −∇cE

e′ · ne′ on Γe,e′

but making sure we uphold the...

Discrete Babuška-Brezzi inf-sup condition1:{
# Lagrange multiplier
constraint equations ≤ # enrichment

equations

}

⇒ nλ =
⌊

nE

4

⌋

1Necessary condition for generating a non-singular global discrete problem.
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Hybrid Variational Formulation of DEM

Strong form:

(S) :


Find c ∈ H1(Ω) such that
−κ∆c + a · ∇c = f , in Ω

c = g, on Γ = ∂Ω
ce − ce′

Weak hybrid variational form:

(W ) :


Find (c, λ) ∈ V ×W such that:

a(v , c) + b(λ, v) = r(v)

b(µ, c) = −rd (µ)

holds ∀c ∈ V, ∀µ ∈ W.

where

a(v , c) = (κ∇v + va,∇c)Ω̃

b(λ, v) =
∑

e

∑
e′<e

∫
Γe,e′ λ(ve′ − ve)dΓ +

∫
Γ
λv dΓ

Ω

Ωe
Γe

Notation:
Ω̃ = ∪nel

e=1Ωe

Γ̃ = ∪nel
e=1Γe

Γe,e′ = Γe ∩ Γe′

Γint = ∪e′<e ∪nel
e=1 {Γ

e ∩ Γe′}
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Discretization & Implementation
Element matrix problem (uncondensed): kPP kPE kPC

kEP kEE kEC

kCP kCE 0

 cP

cE

λh

 =

 rP

rE

rC



Due to the discontinuous nature of VE , cE can be
eliminated at the element level by a static condensation

Statically-condensed DEM Element:(
k̃PP k̃PC

k̃CP k̃CC

)(
cP

λh

)
=

(
r̃P

r̃C

)

Computational
complexity

depends on dimWh

not on dimVE
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Angle-Parametrized Enrichment Functions for 2D
Advection-Diffusion

Derived by solving LcE = a · ∇cE − κ∆cE = 0 analytically (e.g.,
separation of variables).

cE (x; θi ) = e

(
a1+|a| cos θi

2κ

)
(x−xr,i )e

(
a2+|a| sin θi

2κ

)
(y−yr,i ) (1)

Θc ≡ {θi}nE

i=1 ∈ [0, 2π) = set of angles specifying VE

φ = 0, θi = 0 φ = 0, θi = π
2 φ = 0, θi = 3π

2

Figure 2: Plots of enrichment functions cE (x; θi ) for several values of θi (Pe = 20)

Parametrization with respect to θi in (1) enables systematic element design!
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Lagrange Multiplier Approximations

�
�
�
�
�
�

@@R
ne,e′

s

q
q

s = 0

s = hΩe

Ωe′Γe,e′

αe,e′
�
�
�
��

��
Figure 3: Straight edge Γe,e′

oriented at angle αe,e′ ∈ [0, 2π)

λh ≈ ∇cE
e · ne = −∇cE

e′ · ne′

Limit nλ to satisfy inf-sup:

Use
⌊

nE

4

⌋
Lagrange

multipliers of the form (2)

Trivial to compute given exponential enrichments:

λh(s)|Γe,e′ ≈ ∇cE · n|Γe,e′

= const · e
{
|a|
2κ

[
cos(φ−αe,e′ )+cos(θk−αe,e′ )

]
(s−se,e′

r )

} (2)

Non-trivial to satisfy inf-sup condition:
the set Θc that defines VE typically leads to

too many Lagrange multiplier dofs!
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Mesh Independent Element Design Procedure

Algorithm 1. “Build Your Own DEM Element”

Fix nE ∈ N (the desired number of angles defining VE ).

Select a set of nE distinct angles {θk}nE
k=1 between [0, 2π).

Set Θc = {θi}nE
i=1.

Define the enrichment functions by:

cE (x; Θc) = e

(
a1+|a| cos Θc

2κ

)
(x−xr,i )

e

(
a2+|a| sin Θc

2κ

)
(y−yr,i )

Determine nλ =
⌊

nE
4

⌋
.

for each edge Γe,e′ ∈ Γint

Compute max and min of |a|2κ

[
cos(φ− αe,e′ ) + cos(θk − αe,e′ )

]
, call them Λe,e′

min , Λe,e′
max .

Sample {Λe,e′
i : i = 1, ..., nλ} uniformly in the interval [Λe,e′

min , Λe,e′
max ].

Define the Lagrange multipliers approximations on Γe,e′ by:

λ
h|

Γe,e′ = span

{
e

Λ
e,e′
i (s−se,e′

r,i )
, 0 ≤ s ≤ h

}
end for
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Element Nomenclature

Notation

DGM Element: Q-nE -nλ

DEM Element: Q-nE -nλ+ ≡ [Q-nE -nλ] ∪ [Q1]

′Q′: Quadrilateral
nE : Number of Enrichment Functions
nλ: Number of Lagrange Multipliers per Edge
Q1: Galerkin Bilinear Quadrilateral Element

Name nE Θc nλ

DGM elements

Q-4-1 4 φ+
{mπ

2 : m = 0, ..., 3
}

1
Q-8-2 8 φ+

{mπ
4 : m = 0, ..., 7

}
2

Q-12-3 12 φ+
{mπ

6 : m = 0, ..., 11
}

3
Q-16-4 16 φ+

{mπ
8 : m = 0, ..., 15

}
4

DEM elements

Q-5-1+ 5 φ+
{ 2mπ

5 : m = 0, ..., 4
}

1
Q-9-2+ 9 φ+

{ 2mπ
9 : m = 0, ..., 8

}
2

Q-13-3+ 13 φ+
{ 2mπ

13 : m = 0, ..., 12
}

3
Q-17-4+ 17 φ+

{ 2mπ
17 : m = 0, ..., 16

}
4
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Illustration of the Sets Θc for the DEM Elements

Q-5-1+ Q-9-2+

Q-13-3+ Q-17-4+
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Computational Complexities

Element Asymptotic Stencil width for (# dofs) × L2 convergence
# of dofs uniform n × n mesh (stencil width) rate (a posteriori)

Q1 nel 9 9nel 2
Q-4-1 2nel 7 14nel 2

Q2 3nel 21 63nel 3

Q-8-2 4nel 14 56nel 3

Q-5-1+ 3nel 21 63nel 2− 3

Q3 5nel 33 165nel 4

Q-12-3 6nel 21 126nel 4

Q-9-2+ 5nel 33 165nel 3− 4

Q4 7nel 45 315nel 5

Q-16-4 8nel 28 224nel 5

Q-13-3+ 7nel 45 315nel 4− 5

Q-17-4+ 9nel 57 513nel 4− 5

Figure 4: Q1 stencil Figure 5: Q-4-1 stencil
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Summary of Computational Properties

“COMPARABLES”

A priori in
computational cost:

• DGM with n LMs and Qn

• DEM with n LMs and Qn+1

A posteriori in
convergence rate:

• DGM with n LMs and Qn

• DEM with n LMs and Qn/Qn+1

Exponential enrichments⇒ integrations can be computed analytically.

LcE = 0⇒ convert volume integrals to boundary integrals:

a(vE , cE ) =
∫

Ω̃
(κ∇vE · ∇cE + a · ∇cE vE ) dΩ

=
∫

Γ̃
∇cE · nvE d Γ
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Homogeneous Boundary Layer Problem

Ω = (0, 1)× (0, 1), f = 0.

a =
(

cosφ, sinφ
)
.

Dirichlet boundary conditions are specified on
Γ such that the exact solution to the BVP is
given by

cex (x;φ, ψ) =
e

1
2κ {[cosφ+cosψ](x−1)+[sinφ+sinψ](y−1)} − 1

e−
1

2κ [cosφ+cosψ+sinφ+sinψ] − 1

ψ ∈ [0, 2π) : some flow direction (not
necessarily aligned with φ).

Solution exhibits a sharp exponential
boundary layer in the advection direction φ,
whose gradient is a function of the Péclet
number.

Figure 6: φ = ψ = 0

Figure 7: φ = π/7,ψ = 0

18 / 29



Motivation Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DEM for the 2D Constant-Coefficient Advection-Diffusion DEM for 2D Variable-Coefficient Advection-Diffusion DEM for 2D Unsteady Advection-Diffusion SummaryEnrichment Basis Lagrange Multiplier Approximations Element Design Numerical Results

Convergence Analysis & Results (φ = π/7, ψ = 0)

Element
Rate # dofs

of to achieve
convergence 10−3 error

Q1 1.90 63,266
Q-4-1 1.99 14,320

Q2 2.38 24,300
Q-8-2 3.27 5400

Q3 3.48 12,500
Q-12-3 3.88 850

Q4 4.41 8600
Q-16-4 5.19 570

To achieve for this problem the relative error of 0.1% for Pe = 103:
Q-4-1 and Q-8-2 require ≈ 4.5 × fewer dofs than Q1 and Q2

respectively.

⇒ 8× less CPU time.

Q-12-3 and Q-16-4 require ≈ 15 × fewer dofs than Q3 and Q4

respectively.

⇒ 40× less CPU time.
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Solution Plots for Homogeneous BVP
Figure 8: φ = ψ = 0, Pe = 103, ≈ 1600 dofs

Q3

Q-12-3

Figure 9: φ = π/7, ψ = 0, Pe = 105, ≈ 1600 dofs

Q3

Q-12-3

20 / 29



Motivation Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DEM for the 2D Constant-Coefficient Advection-Diffusion DEM for 2D Variable-Coefficient Advection-Diffusion DEM for 2D Unsteady Advection-Diffusion SummaryExtension of Constant-Coefficient DEM Methodology Numerical Results

Extension to Variable-Coefficient Problems
Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

a(x) ≈ ae =constant inside each element Ωe as h→ 0:

{a(x) · ∇c − κ∆c = f (x) in Ω} ≈ ∪nel
e=1{a

e · ∇c − κ∆c = f (x) in Ωe}.

ae ≡
(
−yj − h

2
xj + h

2

)

Ωe

ae′ ≡
(
−yj − h

2
xj + 3h

2

)

Ωe′

xj xj + h xj + 2h

yj

yj + h

�6a(x) =
(
−y, x

)T

Enrichment in each element:

cE
e (x; θe

i ) = e
|ae|
2κ (cosφe+cos θe

i )(x−xe
r,i )e

|ae|
2κ (sinφe+sin θe

i )(y−ye
r,i ) ∈ VE

e
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Inhomogeneous Rotating Advection Problem on an
L–Shaped Domain

-

6

Ω

c = 0

c = 0

c = 0

c = 0

c = 0

c = 0c = 0

aT =
(

1− y , x
)
1 x

1

y

0.5

0

Figure 10: L-shaped domain and
rotating velocity field (curved lines
indicate streamlines)

Homogeneous Dirichlet
boundary conditions are
prescribed on all six sides of
L–shaped domain Ω.
Source: f = 1.
aT (x) =

(
1− y , x

)
.

Outflow boundary layer along the
line y = 1.
Second boundary layer that
terminates in the vicinity of the
re-entrant corner
(x , y) = (0.5,0.5).
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Solutions Plots for Pe = 103 with ≈ 3000 dofs

Q1 Stabilized Q1 Q2

Q-5-1+ Q-9-2+

* “Stabilized Q1” is upwind stabilized bilinear finite element by Harari et. al.
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Convergence Analysis & Results

Element
Rate # dofs

of to achieve
convergence 10−2 error

Q2 1.94 62, 721
Q-5-1+ 1.55 21, 834

Q3 2.67 33, 707
Q-9-2+ 2.37 7, 568

Q4 3.50 20, 796
Q-13-3+ 3.23 5, 935
Q-17-4+ 3.26 4, 802

* “Stabilized Q1” is upwind stabilized bilinear
finite element proposed by Harari et. al.

To achieve for this problem the relative error of 1% for Pe = 103:
Q-5-1+ requires 2.9 × fewer dofs than Q2 (same sparsity).

⇒ 3.6× less CPU time.

Q-9-2+ requires 4.5 × fewer dofs than Q3 (same sparsity).

⇒ 9.2× less CPU time.

Q-13-3+ requires 3.5 × fewer dofs than Q4 (same sparsity).

⇒ 11.4× less CPU time.
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DEM for the Unsteady Advection-Diffusion Equation

Unsteady advection-diffusion equation:

ct + a(x, t) · ∇c − κ∆c = 0

Semi-discrete form of PDE (with semi-implicit Euler) at time n:

cn+1−un

∆t + a · ∇un+1 − κ∆un+1 = 0

Enrichment functions inside each element at time step n are the
free-space solutions to steady analog of the equation above:

VE,n
e = span{un(x) : a(x̄e) · ∇un − κun

xx = 0, x ∈ Ωe}

where

VE,n
e = enrichment field inside element Ωe at time step n

x̄e ≡ midpoint of element Ωe
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Natural Convection in a Differentially-Heated Cavity

Incompressible Navier-Stokes equations with Boussinesq temperature
approximation.

∇ · u = 0
∂u
∂t + u · ∇u− 1

Gr0.5 ∆u = −∇p + T e2
∂T
∂t + u · ∇T − 1

PrGr0.5 ∆T = 0

where
uT = (u1(x, t), u2(x, t)) : fluid velocity vector

p = p(x, t) : fluid pressure
T = T (x, t) : fluid temperature

Ω = (0, 1)2.

No-slip boundary conditions on u on
sides of box.

At time t = 0 begin to heat right wall; top
walls of box are insulating (adiabatic).

Temperature gradient induces
counterclockwise flow field

-

6

T = 0,
u = 0

1

T = 1,
u = 0

∂T
∂n = 0,
u = 0

10

y

x∂T
∂n = 0,
u = 0

Ω

6
�
?
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Simulation: Galerkin T vs. DGM T (Ra = Gr = 1000)

u, v : Galerkin Q3
p : Galerkin Q2

T : Galerkin Q1 T : DGM Q-4-1
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DifferentiallyHeatedCavity_UnsteadyNSTemp_Q1_Ra1000_20x20_2.avi
Media File (video/avi)


DifferentiallyHeatedCavity_UnsteadyNSTemp_Q-4-1_Ra1000_20x20_2.avi
Media File (video/avi)
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Summary

Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs
for advection-dominated transport problems in CFD.

Parametrization of exponential basis enables systematic design of DEM
elements of arbitrary orders.

Augmentation of enrichment space with additional free-space solutions
can improve further the approximation.

For all test problems, enriched elements outperform their Galerkin and
stabilized Galerkin counterparts of comparable computational
complexity, sometimes by many orders of magnitude.

In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., non-linear, unsteady, 3D).

Future work: DEM for incompressible Navier-Stokes.
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